
Séminaire Lotharingien de Combinatoire 78B (2017) Proceedings of the 29th Conference on Formal Power
Article #77, 12 pp. Series and Algebraic Combinatorics (London)

The Weyl–Kac weight formula

Gurbir Dhillon∗ and Apoorva Khare†

Departments of Mathematics and Statistics, Stanford University, Stanford, CA 94305, USA

To Cora Bernard, with gratitude.

Abstract. We provide the first formulae for the weights of all simple highest weight
modules over Kac–Moody algebras. For generic highest weights, we present a formula
for the weights of simple modules similar to the Weyl–Kac character formula. For the
remaining highest weights, the formula fails in a striking way, suggesting the existence
of ‘multiplicity-free’ Macdonald identities for affine root systems.
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1 Introduction

The finite dimensional simple representations of complex semisimple Lie algebras have
long been objects of central concern in algebraic combinatorics. For a semisimple Lie
algebra g, with triangular decomposition g = n− ⊕ h ⊕ n+ and Weyl group W, such
representations are parametrized by weights λ in the dominant Weyl chamber in h∗.
The character of the corresponding simple module L(λ) is given by the Weyl character
formula [27, 28, 29]. If for µ ∈ h∗, we write L(λ)µ for the corresponding weight space,
and writing ∆+ for the weights of n+, i.e. the positive roots, and ρ for half their sum, the
formula reads as:

∑
µ∈h∗

dim L(λ)µeµ =
∑w∈W(−1)`(w)ew(λ+ρ)−ρ

∏α∈∆+(1− e−α)
. (1.1)

We wish to remark on two points at this juncture. First, there exist positive combi-
natorial formulae for dim L(λ)µ, coming from the theory of crystal bases. For example,
for g of type A, these characters are essentially Schur polynomials, and weight space
multiplicities are given by counting semistandard Young tableaux. Second, for the more
basic question of which dim L(λ)µ are positive, there are two very simple descriptions.
Indeed, one can (i) take the convex hull of the Weyl group orbit Wλ, and intersect this
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with an appropriate translate of the root lattice to obtain the nonzero weights. Alterna-
tively, (ii) by W invariance, it suffices to consider dominant µ, for which L(λ)µ is positive
if and only if λ− µ is a sum of positive roots.

When we consider a general simple highest weight module L(λ), i.e. we no longer
assume λ is dominant integral, the character is known through Kazhdan–Lusztig theory
[16, 6, 4]. For example, if λ = y(ν + ρ)− ρ, for ν dominant integral, and y ∈W, we have:

∑
µ∈h∗

dim L(λ)µeµ =
∑w∈W(−1)`(w)Pwyw◦,yw◦(1)e

w(λ+ρ)−ρ

∏α∈∆+(1− e−α)
. (1.2)

Here Px,y(1) denotes the Kazhdan–Lusztig (KL) polynomial evaluated at 1, and w◦ the
longest element of W. What is relevant for us is that as in the case of y = 1, i.e. the Weyl
character formula, there is cancellation on the right hand side, and the situation is made
more subtle by the appearance of KL polynomials.

Unlike for finite dimensional simple modules, positive combinatorial formulae for the
multiplicities of weight spaces dim L(λ)µ are not known in general. This is a problem
of longstanding interest, and there are partial results, for example due to Mathieu and
Papadopoulo in type A [21]. Surprisingly, even the simpler question of describing which
multiplicities are positive was not known until recent work of the second author [17].

The infinite dimensional cousins of semisimple Lie algebras, the affine Lie algebras,
also play a celebrated role in algebraic combinatorics. In broad strokes, the combinatorial
representation theory of affine Lie algebras proceeds similarly to that of semisimple Lie
algebras.

Integrable highest weight modules are the analogues of finite dimensional simple
modules, and their formal characters are given by the Weyl–Kac formula, a modification
of (1.1). For example, it was famously realized by Kac that Macdonald’s identities for
affine root systems are precisely the Weyl–Kac formula specialized to the trivial modules
of untwisted affine algebras [11]. As in the first remark following (1.1), weight multiplic-
ities in integrable highest weight modules can be obtained positively from combinatorial
descriptions of crystal bases. A remarkable example is the Young graph of p-regular
partitions, which is the crystal graph of the basic representation of the affine Lie algebra
ŝlp, for any prime p [10, 22]. As in the second remark following (1.1), it is again true that
the locus of weights with positive multiplicity admits two simple descriptions similar to
(i), (ii) above.

For nonintegrable simple highest weight modules L(λ), as in finite type the formal
characters are again largely understood. However, the answer is considerably subtler.
For integral λ of positive or negative level, the characters are determined by formulae
similar to (1.2), now involving inverse Kazhdan–Lusztig polynomials and Kazhdan–
Lusztig polynomials for the affine Weyl group, respectively [13, 14]. For λ at the critical
level, which plays a distinguished role in the Geometric Langlands program [9], the
Feigin–Frenkel conjecture predicts a formula involving periodic Kazhdan–Lusztig poly-
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nomials, and a modified Weyl denominator [1]. As for semisimple Lie algebras, so far in-
dividual weight multiplicities have resisted combinatorial interpretation; moreover, even
the simpler question of characterizing which multiplicities are positive was unanswered.

In this extended abstract of the paper [7], we explain a solution to this latter problem.
We will present three positive formulae for the weights of arbitrary simple modules over
semisimple and affine Lie algebras. We will then provide a formula for the weights
of all nontrivial simple modules that is strikingly similar to the Weyl–Kac formula,
i.e. involving signs but no Kazhdan–Lusztig polynomials or their variants. The truth
of the formula for nontrivial modules suggests extensions of the formulae of Brion and
Khovanskii–Pukhlikov for exponential sums over lattice points of (virtual) polyhedra.
The failure of the formula for trivial modules suggests the existence of ‘multiplicity-free’
Macdonald identities.

2 Three formulae for the weights of simple modules

Before stating our results, let us establish some context for non-experts. Semisimple
and affine Lie algebras both admit transparent presentations by generators and relations
which can be read off of the Dynkin diagram of the corresponding root system. Such
Lie algebras built from Dynkin diagrams are known as Kac–Moody algebras. If I is
the set of nodes of the Dynkin diagram, then for each i ∈ I one has operators fi, hi, ei.
What is relevant here is that the hi pairwise commute, and lie in a maximal commutative
Lie subalgebra h. The fi, ei, often called lowering and raising operators, respectively,
are simultaneous eigenvectors for the adjoint action of h, with opposite eigenvalues
−αi, αi ∈ h∗, respectively. The eigenvalues αi, i ∈ I, are called the positive simple roots.

Let g be a Kac–Moody algebra. A g-module V is called highest weight if it can be
generated by a single vector v ∈ V that behaves very simply under the action of ‘two
thirds’ of the generators: (i) hv = (h, λ)v, for some λ ∈ h∗ and all h ∈ h, and (ii)
eiv = 0, ∀i ∈ I.3 Such a vector v is then automatically unique up to scalars.

As in the introduction, the simple highest weight modules over g are parametrized
by their highest weight λ ∈ h∗, and we write L(λ) for the corresponding simple module.
We now present three formulae for the weights of L(λ), which are defined to be:

wt L(λ) := {µ ∈ h∗ : dim L(λ)µ > 0}. (2.1)

The first formula uses restriction to a Levi subalgebra corresponding a subdiagram
of the Dynkin diagram. Specifically, write Iλ := {i ∈ I : (hi, λ) ∈ Z>0}. Write l for the

3To make condition (ii) seem more natural, it may be helpful to note that for a finite dimensional
representation of a semisimple Lie algebra, the ei, i ∈ I always act nilpotently. Moreover, the dimension of
their simultaneous kernel is the number of simple summands of the representation. Replacing condition
(ii) by a ‘character’ in (n+/[n+, n+])∨ leads to the Whittaker modules [19].
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subalgebra of g generated by h, ei, fi, i ∈ Iλ. For ν ∈ h∗, write Ll(ν) for the simple highest
weight module for l of highest weight ν. Finally, for a subset S ⊂ h∗, write Z>0S ⊂ h∗ for
the set of nonnegative integral combinations of elements of S. The formula then reads
as:

Theorem 2.2 (Integrable Slice Decomposition, Dhillon–Khare [7]).

wt L(λ) =
⊔

µ∈Z>0{αi,i∈I\Iλ}
wt Ll(λ− µ). (2.3)

The usefulness of Theorem 2.2 is that l is the direct sum of an abelian Lie algebra
which acts semisimply on L(λ) and the Kac–Moody algebra associated to the Dynkin
diagram with nodes Iλ. Moreover, for the latter algebra each Ll(λ− µ) is an integrable
highest weight module, for which the weights are well known.

We include two illustrations of Theorem 2.2 in Figure 2.1. In the lefthand example, the
Levi l contains a copy of sl3 generated by e1, e2, f1, f2. As 3 /∈ Iλ, the weight spaces of L(λ)
corresponding to λ, λ− α3, λ− 2α3, etc. will all be nonzero. Moreover, they are highest
weight with respect to sl3, and generate finite dimensional l representations. The convex
hulls of weights of the first three of these representations appear here shaded. These
are the ‘integrable slices’ of Theorem 2.2, and the theorem says these sl3 representations
produce all weights of L(λ). The righthand example, and (2.3) in general, can be read
similarly.

The second formula shows the relationship between wt L(λ) and its convex hull. We
recall the standard partial order on weights, where ν 6 ν′ if and only if ν′ − ν is a
nonnegative integral combination of positive simple roots. For a subset X ⊂ h∗, we
write conv X for its convex hull. When X = wt L(λ), we abbreviate this to conv L(λ).

Theorem 2.4 (Dhillon–Khare [7]).

wt L(λ) = conv L(λ) ∩ {µ ∈ h∗ : µ 6 λ}. (2.5)

The question of whether the weights of simple modules L(λ) are no finer an invariant
than their convex hull was raised by Daniel Bump. Theorem 2.4 answers this question
affirmatively. Note the similarity of Theorem 2.4 to description (i) of the weights of
simple finite dimensional modules mentioned in the introduction.

Theorem 2.4 is complemented by the following description of the convex hull of a
simple highest weight module. We recall that the Weyl group W of g is generated by
reflections in h∗ indexed by nodes of the Dynkin diagram si, i ∈ I. Let us write WIλ

for
the subgroup generated by si, i ∈ Iλ.

Proposition 2.6 (Dhillon–Khare [7]).

conv L(λ) = conv
⋃

w∈WIλ ,i∈I\Iλ

w{λ−Z>0αi}. (2.7)

When Iλ = I, by the right hand side we mean
⋃

w∈W wλ.
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λ−α1 − α2

−α1

−α3

g =


α1 α2 α3

h1 2 −1 0
h2 −1 2 −1
h3 0 −1 2

, Iλ = {1, 2}

λ

−α0

−α1

−α2

g =


α0 α1 α2

h0 2 −2 −1
h1 −2 2 0
h2 −1 0 2

, Iλ = {0, 1}

Figure 2.1: Two illustrations of Theorem 2.2, with finite and infinite integrability. Note
we only draw three of the infinitely many ‘integrable slices’, or rather the convex
hulls of their weights, in each figure (in the righthand figure, the top slice is a point).
Similarly, we only include four of the infinitely many rays leaving λ in the righthand
figure.

The third formula uses the Weyl group action on h∗. We will use the following
parabolic analogue of the dominant chamber:

P+
λ := {ν ∈ h∗ : (hi, ν) ∈ Z>0, ∀i ∈ Iλ}.

Then the final formula reads as:

Theorem 2.8 (Dhillon–Khare [7]). Suppose λ has finite stabilizer in WIλ
. Then:

wt L(λ) = WIλ
{µ ∈ P+

λ : µ 6 λ}. (2.9)

Note the similarity of Theorem 2.8 to description (ii) of the weights of finite dimen-
sional modules appearing in the introduction. Let us comment on the hypothesis on λ

appearing in Theorem 2.8, as it will reappear shortly. The assumption is met by all L(λ)
for semisimple Lie algebras. For g an affine algebra with connected Dynkin diagram, let
us call a simple module L(λ) trivial if dim L(λ) = 1, or equivalently (hi, λ) = 0, ∀i ∈ I.
Then the assumption is met by all L(λ) which are not trivial.

As stated, Theorem 2.8 does not hold for all λ. For experts, this can be seen by
thinking about a trivial module for ŝl2 and lowering by an imaginary root. However,
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as we explain in [8], it can be corrected by using a refinement of the partial order 6
introduced by Kac and Peterson [12].

For integrable L(λ), Theorem 2.2 is a tautology, and Theorems 2.4 and 2.8 are well
known. Theorems 2.2 and 2.4 are due to the second named author for semisimple Lie
algebras [17]. All other cases are to our knowledge new.

The above descriptions of wt L(λ) are particularly striking in infinite type. For g

affine, the formulae are uniform across the negative, critical, and positive levels, in con-
trast to the (partly conjectural) character formulae discussed in the introduction. When
g is symmetrizable4, we similarly obtain weight formulae at critical λ. The authors are
unaware of even conjectural formulae for ch L(λ) in this case. Finally, when g is non-
symmetrizable it is a notoriously difficult problem to compute exact multiplicities. To
wit, it is completely unknown how to compute weight space multiplicities for integrable
L(λ) or even the adjoint representation. Thus for g non-symmetrizable, Theorems 2.2,
2.4 and 2.8 provide as much information on ch L(λ) as one could hope for, given existing
methods.

3 The Weyl–Kac weight formula

We now turn to a formula for wt L(λ) similar to the Weyl–Kac character formula (recall
that wt L(λ) was defined in (2.1)). To orient ourselves, we first remind a slightly nonstan-
dard presentation of the Weyl–Kac formula in Proposition 3.2 below. This presentation
is due to Atiyah and Bott for semisimple Lie algebras [2]. As we indicate in [7], it can be
straightforwardly adapted to Kac–Moody algebras.

We will need a little notation and a convention. The subalgebra n+ of g generated
by the ei, i ∈ I is a semisimple h-module. Write ∆+ ⊂ h∗ for the weights of n+. For
α ∈ ∆+, write gα for the corresponding eigenspace. Next, for w ∈ W and α ∈ ∆+, by
w(1− e−α)−1 we mean the ‘highest weight’ expansion, i.e.:

w
1

1− e−α
:=

{
1 + e−wα + e−2wα + · · · , wα > 0,
−ewα − e2wα − e3wα − · · · , wα < 0.

(3.1)

With these preliminaries, we may state:

Proposition 3.2. Let g be a symmetrizable Kac–Moody algebra, and L(λ) an integrable highest
weight module, i.e. Iλ = I. Then:

ch L(λ) = ∑
w∈W

w
eλ

∏α∈∆+(1− e−α)dim gα
. (3.3)

4For non-experts, this is a technical condition on the multiplicities of edges between nodes of the
Dynkin diagram, which is automatic for semisimple and affine Lie algebras.
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Of course, for nonintegrable L(λ), the character is much more involved, as reminded
in the introduction. It therefore may be surprising that the weights of generic L(λ)
admit a similar description. To do so, let us package the weights into a multiplicity-free
character:

wt L(λ) = ∑
ν∈h∗ :

L(λ)ν 6=0

eν.

We then have:

Theorem 3.4 (Dhillon–Khare [7]). Let g be an arbitrary Kac–Moody algebra. If the stabilizer
of λ in WIλ

is finite, then:

wt L(λ) = ∑
w∈WIλ

w
eλ

∏i∈I(1− e−αi)
. (3.5)

Note the similarity of (3.3) and (3.5). Theorem 3.4 was known in the case of L(λ)
integrable [5, 15, 23, 24, 26]. All other cases are to our knowledge new, even in finite
type.

For g a semisimple Lie algebra, the application of Theorem 3.4 to L(0) is seen to
be equivalent to the following identity, which may be thought of as a ‘coordinate-free’
denominator identity:

Corollary 3.6 (Dhillon–Khare [7]). Let ∆ be a finite root system. Let Π denote the set of all
bases for ∆, cf. [25]. Then:

∏
α∈∆

(1− e−α) = ∑
π∈Π

∏
β∈∆\π

(1− e−β). (3.7)

3.1 Brion’s formula beyond polyhedra

We wish to call the attention of the reader to two further problems suggested by Theo-
rem 3.4.

Firstly, when the convex hull of wt L(λ) is a polyhedron, Theorem 3.4 may be ob-
tained from Brion’s formula. This is a more general formula for exponential sums over
lattice points of polyhedra, due to Brion [5] for rational polytopes and Lawrence [20]
and Khovanskii–Pukhlikov [18] in general, cf. [3]. We thank Michel Brion for bringing
this to our attention. For experts, one needs to observe that for regular λ the associated
polyhedron is Delzant. The case of singular λ may then be obtained via a deformation
argument due to Postnikov [23].

For infinite dimensional g, the convex hulls conv L(λ) are rarely polyhedral, e.g. since
the Weyl group is infinite and wλ are all extremal points. Instead, one has the following
result:
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Theorem 3.8 (Dhillon–Khare [8]). Let g correspond to a connected Dynkin diagram of infinite
type, and let L(λ) be a nontrivial module, i.e. dim L(λ) > 1. Then the following are equivalent:

1. The stabilizer of λ in WIλ
is finite.

2. The convex hull of wt L(λ) is locally polyhedral, i.e. its intersection with every polytope is
a polytope.

The combination of Theorems 3.4 and 3.8 suggest that Brion’s formula should be true
for an appropriate class of locally polyhedral convex sets containing both polyhedra
and sets of the form conv L(λ). This in particular would simplify the argument for
Theorem 3.4 for integrable modules.

3.2 ‘Multiplicity-free’ Macdonald identities

The second problem we wish to mention to the reader concerns the extension of Theo-
rem 3.4 to trivial modules. For root systems of infinite type, the trivial module L(0) no
longer satisfies the condition of Theorem 3.4. Moreover, the stated equality no longer
always holds, and instead fails in very striking ways. For example, we obtained the
following identity by a direct calculation:

Proposition 3.9 (Dhillon–Khare [7]). Let g correspond to a Dynkin diagram of infinite type
with two nodes. Write ∆+

im for the positive imaginary roots of g. Then:

∑
w∈W

w
1

∏i∈I(1− e−αi)
= 1 + ∑

δ∈∆+
im

e−δ. (3.10)

As in the Macdonald identities, i.e. the denominator identity for affine Lie algebras,
the naive equality one would guess using only real roots turns out to require correction
terms coming from the imaginary roots. Moreover, as we are deforming a ‘multiplicity-
free’ denominator identity for finite root systems, i.e. for wt L(λ) rather than ch L(λ), the
correction terms appearing in (3.10) are insensitive to the multiplicity of the imaginary
root spaces gδ. It would be very interesting to obtain identities similar to (3.10) for higher
rank infinite root systems, i.e. more ‘multiplicity-free’ Macdonald identities.

4 Some ingredients of the proofs

Having explained the statements of some of the results of [7], we now take a moment to
highlight some new ingredients that went into their proofs. While the above statements
concern the simple highest weight modules, they emerge from a study of general highest
weight g-modules V.
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For a fixed λ ∈ h∗, one might try to classify all the modules with highest weight λ.
However, this turns out to be a daunting task: even for semisimple Lie algebras of low
rank, such as sl5, there can be infinitely many non-isomorphic highest weight modules
of highest weight λ. One therefore can try to use invariants to distinguish between
members of this profusion. The following theorem says that several of these invariants,
seemingly different, are in fact the same:

Theorem 4.1 (Dhillon–Khare [7]). Let g be an arbitrary Kac–Moody algebra. Let V be a highest
weight g-module. The following data are equivalent:

1. IV , the integrability of V, i.e. IV = {i ∈ I : fi acts locally nilpotently on V}.

2. conv V, the convex hull of the weights of V.

3. The stabilizer of ch V in W.

To our knowledge, Theorem 4.1 is new even for semisimple Lie algebras. Before
explaining how it connects to the problem of determining the weights of simple modules,
let us mention a convexity-theoretic consequence.

Corollary 4.2 (Ray Decomposition, Dhillon–Khare [7]). Let V be a highest weight module,
and let IV be as in Theorem 4.1. Let WIV denote the subgroup of W generated by si, i ∈ IV . Then:

conv V = conv
⋃

w∈WIV ,i∈I\IV

w(λ−Z>0αi) (4.3)

When IV = I, by the right hand side we mean
⋃

w∈W wλ.

We include two illustrations of Corollary 4.2 in Figure 4.1. To our knowledge Corol-
lary 4.2 was not previously known for non-integrable modules in either finite or infinite
type.

Notice that Proposition 2.6 is a special case of Corollary 4.2. The above presentation
of the convex hull can be understood as follows. Consideration of the nodes of I \ IV ,
and the representation theory of sl2 tell us that λ − Z>0αi lies in ch V, ∀i ∈ I \ IV .
Consideration of the nodes of IV tell us the character, whence the convex hull, should be
WIV invariant. The content of Corollary 4.2 is that these two a priori estimates are in fact
enough to generate the convex hull.

As Corollary 4.2 indicates, Theorem 4.1 has useful implications in the convexity theo-
retic study of highest weight modules. In fact, in the companion work [8], we determine
the face posets of all convex hulls of highest weight modules. To our knowledge, this
classification had not been fully achieved even for semisimple Lie algebras.

Finally, let us explain how to use Theorem 4.1 to obtain information about wt L(λ),
i.e. how to pass from convex hulls to weights. For a highest weight module V, define
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λ−α1 − α2

−α1

−α3

λ

−α0

−α1

−α2

Figure 4.1: Ray Decomposition, with finite and infinite integrability; here g and IV are
as in Figure 2.1.

the potential integrability of V to be Ip
V := Iλ \ IV . To justify the terminology, note these

are precisely the simple directions whose actions become integrable in quotients of V.
In the following theorem, we use the parabolic Verma modules M(λ, J), for J ⊂ Iλ.

These are characterized by the property that they have integrability J and admit a mor-
phism to every highest weight module V of highest weight λ with IV = J.

Theorem 4.4 (Dhillon–Khare [7]). Let V be a highest weight module, Vλ its highest weight
line. Let l denote the Levi subalgebra generated by h, ei, fi, i ∈ Ip

V . Then wt V = wt M(λ, IV) if
and only if wt U(l)Vλ = wt U(l)M(λ, IV)λ, i.e. wt U(l)Vλ = λ−Z>0{αi, i ∈ Ip

V}.
In particular, if V = L(λ), or more generally |Ip

V | 6 1, then wt V = wt M(λ, IV).

Theorem 4.4 is new in both finite and infinite type. Theorems 4.1 and 4.4, combined
with some analysis of the parabolic Verma modules, yield proofs of the results advertised
in the second and third sections. In fact, note that Theorems 2.2, 2.4 and 2.8 correspond
to the manifestations 1., 2., and 3., respectively, of the invariant studied in Theorem 4.1.
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